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ABSTRACT

Moisture boundaries, or drylines, are common over the southern U.S. high plains and are one of the most

important airmass boundaries for convective initiation over this region. In favorable environments, drylines

can initiate storms that produce strong and violent tornadoes, large hail, lightning, and heavy rainfall. Despite

their importance, there are few studies documenting climatological dryline location and frequency, or per-

forming systematic dryline forecast evaluation, which likely stems from difficulties in objectively identifying

drylines over large datasets. Previous studies have employed tedious manual identification procedures. This

study aims to streamline dryline identification by developing an automated, multiparameter algorithm, which

applies image-processing and pattern recognition techniques to various meteorological fields and their gra-

dients to identify drylines. The algorithm is applied to five years of high-resolution 24-h forecasts fromWeather

Research and Forecasting (WRF) Model simulations valid April–June 2007–11. Manually identified dryline

positions, which were available from a previous study using the same dataset, are used as truth to evaluate the

algorithm performance. Generally, the algorithm performed very well. High probability of detection (POD)

scores indicated that the majority of drylines were identified by the method. However, a relatively high false

alarm ratio (FAR) was also found, indicating that a large number of nondryline features were also identified.

Preliminary use of random forests (a machine learning technique) significantly decreased the FAR, while

minimally impacting the POD. The algorithm lays the groundwork for applications includingmodel evaluation

and operational forecasting, and should enable efficient analysis of drylines from very large datasets.

1. Introduction and motivation

Drylines occur most frequently over the central U.S.

high plains [i.e., from western Nebraska to western

Oklahoma and Texas; e.g., Fujita (1958) and Rhea

(1966)] and mark an intersection where relatively

warm, moist air originating from the Gulf of Mexico

meets a relatively hot, dry air mass originating over

the elevated terrain of the southwestern United

States and northern Mexico. Afternoon dewpoint gra-

dients of 10K (100km)21 are common with drylines, and

in particularly strong drylines, extreme moisture gradi-

ents up to 10Kkm21 have been documented (Pietrycha

and Rasmussen 2001). The strong localized convergence
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and resulting ascent, along with abundant moisture that

is often associated with drylines, make them one of the

most important airmass boundaries for convective ini-

tiation over this region. When other favorable environ-

mental parameters (e.g., vertical wind shear and

instability) are present, drylines can serve as the initia-

tion mechanism for thunderstorms that produce haz-

ardous weather, including strong and violent tornadoes,

large hail, lightning, and heavy rainfall.

Despite the importance of drylines, there are only a

few studies documenting the climatological dryline

location and frequency. Rhea (1966) and Schaefer

(1973) documented drylines during April–June of the

periods 1959–62 and 1966–68, respectively. Peterson

(1983) documented drylines over a 10-yr period (1970–

79), but only focused on western Texas. To date, the

most comprehensive climatological dryline study is

Hoch and Markowski (2005). They established a 30-yr

dryline climatology using 0000 UTC surface analyses

during April–June 1973–2002, finding drylines on 32%

of days, with peak frequency occurring from mid- to

late May. Schultz et al. (2007) and Coffer et al. (2013)

also find similar dryline frequencies over shorter time

periods.

There are even fewer studies evaluating the per-

formance of numerical weather prediction (NWP)

models in predicting the occurrence and location of

drylines for large sets of cases. Most model evaluation

studies have focused on single cases (e.g., Ziegler

et al. 1997; Hane et al. 2001). In fact, to our knowl-

edge the only studies that have systematically

diagnosed the performance of NWP models in fore-

casting dryline occurrence and location are Coffer

et al. (2013) and Clark et al. (2015). In Coffer et al.

(2013), 24-h forecasts of dryline position from a

4-km grid-spacing experimental version of the We-

ather Research and Forecasting (WRF) Model

(Skamarock et al. 2008), as well as the 12-km grid-

spacing North American Mesoscale Forecast Sys-

tem (NAM; Rogers et al. 2009), were evaluated for

the period April–June 2007–11. It was found that the

NAM had no systematic eastward biases while the

WRF had significant eastward biases. In Clark et al.

(2015), the sensitivity of 24-h forecast dryline posi-

tion to boundary layer parameterizations in 4-km

grid-spacing WRF Model simulations was examined

for the cases that occurred during the 2010–12

NOAA/Hazardous Weather Testbed Spring Fore-

casting Experiments (e.g., Clark et al. 2012). Sig-

nificant differences in average forecast dryline position

were found among the different boundary layer pa-

rameterizations with the Mellor–Yamada–Nakanishi–

Niino (MYNN; Nakanishi 2000, 2001; Nakanishi and

Niino 2004, 2006) scheme generally having the largest

eastward position errors.

The small number of studies documenting observed

dryline climatologies, as well as performing systematic

NWP model forecast evaluation, is likely related to

several factors. First, the relatively coarse observing

network makes identifying the precise location of the

dryline difficult. For example, Hoch and Markowski

(2005) used objective analyses of conventional, synoptic-

scale surface observations obtained using a two-pass

Barnes (1964) technique, and estimated that the den-

sity of observations allowed them to determine the

maximum eastward extent of dryline positions only

to within about 0.58. Recent development and im-

provement of high-resolution analysis and assimila-

tion systems such as NCEP’s hourly 5-km Real-Time

Mesoscale Analysis (RTMA; De Pondeca et al. 2011)

system and the hourly 12-km grid-spacing Rapid

Refresh (RAP; Brown et al. 2012) model should

help produce more accurate and precise observed

dryline positions. Second, only within the last decade

or so have operational mesoscale models had adequate

resolution to realistically resolve the sharp moisture

gradients associated with drylines. Finally, further

difficulties with identifying and tracking drylines occur

because of their complex spatial and temporal char-

acteristics. For example, drylines can jump (e.g., Hane

et al. 2001) when a large section of the moist sector

mixes out all at once, at times when multiple moisture

gradients are present (e.g., Hane et al. 1993; Crawford

and Bluestein 1997), and other types of airmass

boundaries, such as outflow boundaries and cold fronts,

have some characteristics similar to drylines. Because

of these complexities, careful examination of multiple

meteorological fields is necessary to properly identify

drylines in both model and observational datasets,

which is exceedingly laborious, especially for large

datasets of dryline cases. For example, the manual

dryline identification conducted in both the Coffer

et al. (2013) and Clark et al. (2015) studies took many

months to complete. As a result, Coffer et al. (2013) rec-

ommend the development of automated approaches for

identifying, tracking, and visualizing drylines simulated in

high-resolution models, and recognize that the increasing

use of high-resolution ensembles will make automation

increasingly valuable.

This study aims to address some of the recommen-

dations of Coffer et al. (2013) by developing an auto-

mated, multiparameter dryline identification algorithm,

which applies image-processing and pattern recogni-

tion techniques to various fields (and their gradients)

to identify drylines. The algorithm is applied to five years

of high-resolution 24-h forecasts from WRF Model
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simulations valid April–June 2007–11, which is the

same dataset evaluated by Coffer et al. (2013). Thus,

manually identified forecast dryline positions from

the Coffer et al. (2013) study are available as a truth

dataset to evaluate the algorithm performance. Addi-

tionally, to test the application of a machine learning

technique known as random forests (RF; Breiman 2001)

using the 2007–11 dataset as a training period, the dry-

line algorithm is also applied to 24-h National Severe

Storms Laboratory (NSSL) WRF from April to June

2012. For evaluation purposes, a truth dataset was cre-

ated for the 2012 cases using the manual identification

procedures of Coffer et al. (2013). The remainder of this

study is organized as follows. Section 2 describes the

data and methods, including the configuration of the

WRF Model simulations, the methodology used to ob-

tain the manually identified dryline positions in Coffer

et al. (2013), and the details of the automated dryline

identification algorithm. Section 3 describes the results,

and section 4 offers a summary, conclusions, and rec-

ommendations for further algorithm improvements and

applications.

2. Data and methods

a. NSSL-WRF configuration

The dryline algorithm is applied to 0000 UTC initial-

ized, 24-h forecasts from a 4-km grid-spacing configu-

ration of theWRFModel that is run by theNSSL using a

computing allocation on the Jet High-Performance

Computing (HPC) cluster (Raytheon–Aspen Systems)

in Boulder, Colorado. This permanent experimental

modeling framework is known as the NSSL-WRF and

was developed to provide storm-scale guidance to Storm

Prediction Center forecasters and serve as a testing

ground for the development of storm-scale model di-

agnostics (e.g., Kain et al. 2010). Before 9 June 2009,

WRF Model, version 2.2, was used for the NSSL-WRF

with a domain encompassing most of the United States

except for portions of the west. After 9 June 2009, the

domain was expanded to encompass the entire CONUS

and the model was updated to version 3.1.1.1 Physical

parameterizations include the Mellor–Yamada–Janji�c

(MYJ; Mellor and Yamada 1982; Janji�c 2002) boundary

layer scheme, the WRF single-moment 6-class micro-

physics scheme (WSM6; Hong and Lim 2006), the Noah

land surface model (Chen and Dudhia 2001), and the

Dudhia (1989) shortwave and RRTM (Mlawer et al.

1997) longwave radiation schemes. Initial and lateral

boundary conditions (3-h updates) are from 0000 UTC

initializations of the 12-km grid-spacing NAM (in-

terpolated onto a 40-km grid).

b. Manual dryline identification

The manually identified 24-h forecast dryline posi-

tions that are used to evaluate the dryline algorithm

were obtained from the Coffer et al. (2013) study, which

included 116 dryline cases during the period April–June

2007–11. Including the 29 additional dryline cases that

were identified for the April–June 2012 period gives 135

total cases, which are listed in Table 1. The details on the

criteria and procedures for manual dryline identification

are described in Coffer et al. (2013), and also summa-

rized as follows. The primary dryline criterion was an

unambiguous boundary between relatively moist and

dry air along boundary length scales of O(100) km,

where moisture boundaries were identified using 24-h

forecasts of 2-m specific humidity. It was required that at

some point along the boundary the specific humidity

gradient magnitude was at least 3 g kg21. Additionally,

2-m temperatures fields were used to distinguish dry-

lines from cold fronts, and a shift in 10-m wind direction

from a dry to a moist source region was also required.

When drylines were identified, a Grid Analysis and

Display System (GrADS; http://www.iges.org/grads/)

script was used to manually draw a series of points along

the axis of maximum specific humidity gradient magni-

tude. Straight-line segments connecting these points

TABLE 1.Dates in which drylines weremanually identified from 24-h forecasts of theNSSL-WRFduring theApril–June 2007–11 period in

Coffer et al. (2013), as well as April–June 2012 (135 total cases). The drylines were present at 0000 UTC for each day indicated.

2007 2008 2009 2010 2011 2012

Apr 3, 11, 20–24, 25 1, 4, 8, 10, 17,

21–22, 24–25

5, 10, 18, 19,

27, 30

1, 5–7, 30 3–4, 8–10, 14–15,

19–20, 22–23,

25–27, 30

1–3, 7, 12–15,

26–30

May 5–7, 23–24, 30 1–2, 7, 9, 13,

22–24, 27, 31

1–2, 6, 9, 14 7, 10–13, 20,

22–25

8–10, 12–13, 18–22,

24–25, 28–31

2–4, 19–20,

24–26, 28, 31

Jun 2, 7–8 1, 4–8, 11–13 10, 12, 13, 16 12–14, 18 9, 12, 17–18, 21, 26 10–11,

19–21, 27

1 In April 2013, NSSL-WRF was upgraded to WRF, version

3.4.1, and real-time forecast graphics can be found online (http://

www.nssl.noaa.gov/wrf).
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composed the dryline, and the latitude–longitude co-

ordinates were saved in text files, which are used for the

dryline algorithm evaluation.

c. Description of automated dryline algorithm

A flowchart with each step of the algorithm2 is pro-

vided in Fig. 1. Additionally, Figs. 2 and 3 illustrate the

impact of each step for a dryline case that occurred at

0000 UTC 26 April 2012. This was a particularly chal-

lenging case for dryline identification because moisture

gradients, although clearly present, were relatively

weak, and several nondryline boundaries were present.

Additionally, the case provides a clear demonstration of

the impact of nearly each step in the algorithm. The

synoptic weather regime was characterized by a weak

ridge axis extending along the Rocky Mountains with

weak [15–25 knots (kt; where 1 kt 5 0.51m s21)] west-

erly to west-northwesterly midtropospheric flow down-

stream over the southern high plains. The remainder of

this section describes each step of the dryline algorithm.

The first part of the algorithm is designed to identify

any moisture gradient for potential dryline classifica-

tion. It begins by smoothing the raw specific humidity

(Fig. 2a) and dewpoint (Fig. 2b) fields using a Gaussian

filter with s5 10km (or 2.5 grid points), which is used to

FIG. 1. Dryline algorithm flowchart. See text for details of each step.

2 The dryline algorithmdescribed hereinwas found to be the best

method after experimenting with several other approaches. These

alternative approaches are not discussed herein, but can be found

in MacKenzie (2013).
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FIG. 2. NSSL-WRF 24-h forecasts valid at 0000 UTC 26 Apr 2012: (a) specific humidity (g kg21), (b) dewpoint

(K), (c) specific humidity gradient magnitude [g kg21 (64 km)21], (d) dewpoint gradient magnitude [K (64 km)21],

(e) mask of specific humidity gradient magnitude$2 g kg21 (64 km)21 (red shading), (f) mask of dewpoint gradient

magnitude$3.5K (64 km)21 (red shading), (g) areas where red shading in (e) and (f) overlap (i.e., binary AND),

and (h) contiguous regions of grid points from (g) that have at least one grid point with vapor pressure gradient

magnitude $1000 Pa (64 km)21.
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reduce noise while retaining dryline-scale features.

Similar filtering was found to very effectively aid in the

manual identification performed by Coffer et al. (2013).

Next, the gradients of the smoothed moisture fields are

calculated using a 33 3 Sobel operator, which is a finite-

difference method commonly used in image processing

for edge detection (Figs. 2c,d; Lakshmanan 2012). As

with all finite-difference methods, the technique is par-

ticularly sensitive to high-frequency noise, making the

previous smoothing step key to obtaining reasonable

results. Then, the magnitudes of the two moisture gra-

dient fields are thresholded to provide a preliminary

estimate of possible dryline locations (Figs. 2e,f). In

other words, each contiguous region of points exceeding

the specified threshold represents a possible dryline.

This initial thresholding is performed using optimistic

(i.e., lower) thresholds designed to reduce the risk of

breaking apart desired features early on at the cost of

including spurious dryline regions.

Although previous studies (e.g., Hoch andMarkowski

2005) recommend using specific humidity gradient

magnitude for dryline identification because specific

humidity is not sensitive to elevation differences (unlike

dewpoint temperature), we find the best results when

requiring that both filtered dewpoint and specific humidity

gradient magnitude fields exceed a specified threshold.

Thus, once potential dryline regions are identified from

thresholding both the specific humidity and dewpoint

gradient fields, only the points that exceeded the specified

thresholds for both of the fields are considered for dryline

FIG. 3. NSSL-WRF 24-h forecasts valid at 0000 UTC 26 Apr 2012: (a) specific humidity gradient magnitude [g kg21 (64 km)21] using

a Gaussian filter with s5 6 grid points; (b) ridge and trough lines from application of NMS to (a); (c) binary AND of (b) and thresholded

masks in Fig. 2h; (d) binary closing applied to (c); (e) reapplication of the requirement of vapor pressure gradient magnitude $1000 Pa

(64 km)21 and size check (i.e., features that do not extend beyond a 180 km 3 220 km bounding box are removed); and (f) final output

[regions extending beyond 308–428N are removed and a water mask is applied (see text for details)].
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classification (i.e., binary AND; Fig. 2g). These regions are

then required to contain at least one grid point above a

vapor pressure gradient magnitude threshold and be of a

certain size (Fig. 2h). The size criterion removes a large

number of nondryline features in addition to smaller dis-

connected regions, while the vapor pressure criterion

prevents the inclusion of small, noiselike features regard-

less of their moisture gradient.

The next section of the algorithm begins indepen-

dently of the previous step and is designed to identify the

lines of strongest moisture gradient along which any

potential drylines will be placed. The process is based on

the application of nonmaximum suppression (NMS; Sun

and Vallotton 2009) to the specific humidity gradient

field. TheNMSmethod requires the x and y components

of the gradient and is applied by performing a local

maximum only on the examined grid point and its

neighbors that are perpendicular to the gradient di-

rection. The result is continuous isolines of maxima or

minima in the gradient field. While the algorithm also

identifies regions of noise, these are limited to thin and

very fragmented lines. One weakness of the NMS

method is that it does not allow for branching (i.e., two

isolines of maximamerging or splitting from one), which

creates the potential for identified isolines to follow

smaller-scale, nondryline features. Two steps are taken

to prevent these deviations. First, the specific humidity

field used for this process is smoothed using a Gaussian

filter with s 5 6 grid points (24 km), which removes

some of the smaller branches, increases the spacing be-

tween identified isolines, and greatly reduces noise

caused by small variations in gradient intensity.

Second, a number of binary dilations (e.g., Weeks 1996)

are used to enlarge the isolines identified byNMS, which

helps connect closely spaced branches. An example of

the smoothed specific humidity field and corresponding

application of NMS with binary dilations for 0000 UTC

26 April is shown in Figs. 3a and 3b, respectively.

The final portion of the algorithm begins by combin-

ing the binary masks created in the previous two steps

using a binary AND (Fig. 3c). The mask from the first

step removes the spurious isolines found by NMS, re-

stricting the output to regions where a drylinelike en-

vironment is present. Similarly, the NMSmask limits the

spurious deviations identified during the initial thresh-

olding process by removing all regions that do not fall

along a line of maximum moisture gradient. The re-

sulting output mask often has small gaps present be-

cause of minor discrepancies in the two input grids. The

holes are removed using binary closing, which re-

cursively expands and contracts the identified regions to

fill in the empty spaces (Fig. 3d). The vapor pressure

gradient and size thresholds are then reapplied,

removing any undesired features that may have broken

off during the above process (Fig. 3e). Finally, a set of

masks is applied to remove regions near large bodies of

water (e.g., Great Lakes and the Gulf of Mexico), and a

latitudinal mask excludes all values outside of the area

between 308 and 428N to be consistent with the area used

for manual dryline identification in Coffer et al. (2013).

The resulting image forms the final output of the algo-

rithm (Fig. 3f). The dryline algorithm was applied to the

135 dryline cases, as well as 344 cases that did not con-

tain drylines (479 total cases) in order to assess the

performance, including both events and nonevents.

3. Results

a. Assessment of algorithm performance

First, to quantify the correspondence between the

manually and objectively identified dryline positions,

frequency histograms of the shortest distance between

objectively identified dryline points and the manually

identified dryline positions of Coffer et al. (2013) are

presented in Fig. 4. It is important to note that only the

objective dryline points that fall within 30km of a

manually identified dryline are considered in this anal-

ysis. The 30-km buffer was applied so that nondryline

features that were mistakenly identified by the dryline

algorithm (discussed later) would not skew the results.

In other words, for objectively identified drylines that

matched a manually identified dryline, Fig. 4 aims to

quantify the location differences. Figure 4a indicates

that 75%of the objective dryline points are within 10km

of a manually identified dryline, and 90% are within

15 km. The same data are used in Fig. 4b, but the shortest

relative east–west distances between the manually and

objectively identified drylines are presented, with neg-

ative (positive) values indicating westward (eastward)

differences relative to the subjectively identified dry-

lines. The differences are approximately normally dis-

tributed with a mean near zero, indicating a lack of

systematic east–west differences in manual versus ob-

jective dryline positions.

Some of the larger distances in Fig. 4 can be attributed

to the dryline algorithm following a different moisture

boundary than in the subjective analyses, an example of

which is illustrated over central Texas in Fig. 5. Because

NMS follows the moisture boundary with the largest

gradient magnitude, when there are two moisture

boundaries meeting dryline criteria present, the dryline

algorithm will choose the stronger one. In the case of

Fig. 5, it could be argued that the objectively identified

dryline is actually a better depiction of the dryline than

the manually identified one.
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Another factor leading to some of the larger distances

in Fig. 4 is that the dryline algorithm tends to extend

drylines farther along moisture boundaries than the

subjective analyses. This effect can be seen on the

northernmost sections of the dryline in Fig. 5, with

the manually identified dryline ending in Colorado

while the objective dryline extends farther north into

the Nebraska Panhandle. The lengthening is likely due

to the combination of initial thresholds and NMS. The

isolines created by NMS rely on the threshold mask to

provide a stopping criterion. Without the threshold

mask, the isolines extend as far as possible while fol-

lowing the cross-boundary gradient maximum regard-

less of gradient intensity. However, the initial thresholds

are optimistic (i.e., intentionally low), ensuring that

dryline regions are retained at the cost of keeping ad-

ditional features. While the subsequent vapor pressure

gradient and size thresholds aid in removing discon-

nected features, they cannot affect extensions attached

to the dryline regions. When the threshold mask is

FIG. 5. Steps of the dryline algorithm applied to NSSL-WRF 24-h forecasts valid at 0000 UTC 1May 2008. Black

lines indicate the position of the manually identified dryline from the Coffer et al. (2013) dataset. (a) Specific

humidity gradient magnitude [g kg21 (64 km)21]. (b) Final output from the dryline algorithm (red).

FIG. 4. (a) Frequency histogram of the shortest total distances between points identified by the dryline algorithm

and the subjectively analyzed drylines from Coffer et al. (2013). Only dryline points that fall within 30 km of the

subjectively analyzed drylines are considered. The two black vertical linesmark the distances within which 75%and

90% of the observed points occur (;10 and 15 km, respectively). (b) Frequency histogram of shortest relative east–

west distances between points identified by the dryline algorithm and the subjectively analyzed drylines fromCoffer

et al. (2013).
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applied to the NMS output, the isolines are allowed to

travel into the lower-gradient regions, resulting in overly

long drylines. A second thresholding has been examined

for use in reducing this affect; however, we were unable

to achieve consistent results. A variety of iterative

endpoint removal techniques were also investigated,

with similar inconsistent results.

To assess the dryline algorithm over all cases,

neighborhood-based forecast verification metrics based

on contingency tables were computed. These metrics

require two datasets on common grids. The output of the

dryline algorithm is a gridded mask of zeros and ones,

where the ones are the points composing the dryline, so

it fits the requirement for a gridded dataset. However,

the manually defined drylines are composed of a series

of connected points that are not on a grid. A gridded

mask was created from these connected points by

defining a series of additional points along each manu-

ally defined dryline segment at 0.058 increments. Then,

any point on the 4-km grid from the automated dryline

detection that fell3 within 0.0758 of these additional

points was assigned a value of one, while all other points

were assigned zero. Thus, a gridded mask of manually

detected drylines was created, which could be compared

to the automatically detected drylines.

Considering only individual grid points, the 2 3 2

contingency tables of possible forecast outcomes consist

of hits (points at which both automated and manual

procedures have identified a dryline), misses (points

where the manual procedure identified a dryline but the

automated did not), false alarms (points where the al-

gorithm identified a dryline but the manual procedure

did not), and correct negatives (points where neither of

the procedures identifies a dryline). These contingency

table elements are extended to a neighborhood-based

framework following the procedures outlined in Clark

et al. (2010). Thus, if a manually defined dryline exists

at a point, this is a hit if an automatically detected dry-

line exists at the point or at any grid point within a radius

r of the point. Similarly, if an automatically detected

FIG. 6. Dryline frequencies for 421 days during the period April–June 2007–11 from (a) the automated dryline

identification algorithm and (b) the manually detected dryline dataset.

FIG. 7. Neighborhood-based POD (red line), FAR (green line),

and CSI (blue line) as a function of ROI for the period April–

June 2007–11.

3 The radius of 0.0758 was chosen because it resulted in a man-

ually defined dryline width that approximately matched that of the

automatically detected drylines.
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dryline exists at a point, the point is considered a hit if a

manually defined dryline exists at the point or at any

point within r of the point. A miss is assigned when a

manually defined dryline exists at a point and none of

the points within r contain an automatically detected

dryline. A false alarm is assigned when an automatically

detected dryline exists at a point and none of the points

within r contain a manually defined dryline. Finally,

correct negatives are assigned in the same way as for the

traditional computation of contingency table elements

(i.e., a manually or automatically detected dryline is

neither forecast nor observed at a single point).

Using the neighborhood-based contingency table el-

ements, probability of detection (POD), false alarm rate

(FAR; e.g., Wilks 1995), and critical success index (CSI;

e.g., Doswell et al. 1990) are computed, where

POD5
hits

hits1misses
, (1)

FAR5
false alarms

false alarms1 hits
, (2)

and,

CSI5
hits

hits1misses1 false alarms
. (3)

Radii of 0, 4, 8, 12, 16, 20, 24, 32, and 40km are considered,

and the contingency table elements are summed over all

cases. Note that a radius of 0km simply reduces to the

traditional gridpoint-based version of the metrics. POD

indicates the fraction of manually defined dryline points

that were correctly identified by the automated dryline

algorithm, FAR indicates the fraction of automatically

detected drylines that did not correspond to manually

detected drylines, and CSI measures how well the auto-

matically detected drylines correspond to themanual ones.

The range of CSI is from zero to one, with zero indicating

no skill and one indicating a perfect correspondence.

First, to compare and visualize the location and extent

of manually and automatically detected drylines, dryline

frequencies at each grid point over all of the April–June

2007–11 cases (both dryline and nondryline days) are

displayed in Fig. 6. From Fig. 6, it is very clear that the

automated dryline detection algorithm identifies dry-

lines much more frequently than the manual detection

FIG. 8. Dryline frequencies for 58 days during the

period April–June 2012 from (a) the automated

dryline identification algorithm without the RF im-

plemented, (b) the automated dryline identification

algorithm with the RF implemented, and (c) the

manually detected dryline dataset.
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procedure. However, the areas over which the auto-

mated algorithm identifies drylines most frequently—an

axis from western Texas and Oklahoma to southwestern

Kansas—matches quite well with the higher frequencies

from the manual dryline identification. The over-

detection in the automated algorithm is related to sev-

eral factors. First, as discussed in the previous section,

the algorithm often extends drylines farther than the

manual procedures. Second, the algorithm often iden-

tifies other boundaries connected to the dryline, such as

cold fronts and outflow boundaries, as part of the dry-

line. Finally, despite the many steps that were taken to

prevent the algorithm from detecting nondryline

boundaries, these spurious detections were still identi-

fied as drylines quite frequently.

To quantify the skill of the automated detection al-

gorithm, Fig. 7 displays POD, FAR, and CSI as a func-

tion of the radius of influence (ROI). Although the POD

is relatively low at the grid scale (;0.68), it rises sharply

with increasing ROI and is greater than 0.90 at

ROIs$8 kmwith an asymptote of about 0.95. This result

implies that, when accounting for small spatial errors,

the automated detection algorithm correctly identifies

about 95% of the manually identified drylines. On the

other hand, the FAR is very high at the grid scale

(;0.85), but falls slightly with increasing ROI. The FAR

appears to asymptote at about 0.70, which implies that,

when accounting for small spatial errors, about 70% of

automatically detected drylines do not correspond to a

manually detected dryline. This result is consistent with

Fig. 6, which clearly shows the overdetection of drylines.

b. Application and assessment of a machine learning
algorithm

To address the issue of overdetection by the dryline

identification algorithm, random forests (Breiman 2001)

were applied to the automatically detected drylines us-

ing the Waikato Environment for Knowledge Analysis

(WEKA; Hall et al. 2009) toolkit. RFs are a machine

learning technique that uses an ensemble of decision

trees (another machine learning structure) to output a

predictand for a given sample. Decision trees are gen-

erally formed by recursively splitting their training

dataset along an attribute threshold chosen to maximize

the reduction of information remaining in the dataset.

The process is repeated until a predictand is selected

or too few samples remain. For application to the au-

tomatically detected drylines, each dryline point is

assigned a probability that it corresponds to a manually

detected dryline. Each decision tree in the RFs is per-

turbed by denying it access to certain attributes during

its creation. As applied herein, the RF uses 100 trees

with a maximum depth of 5.

TheRF techniquewas chosen for three reasons. First, the

structure of RFs is well suited for classification (although

they can be applied to regression problems). Second, the

importance of the attributes being provided to the RF is

unknown. There has been no assessment of how useful

each may be to classification; however, the perturbations

of the RF’s component decisions trees, combined with

the algorithm’s ensemble approach to prediction, enable

the technique to handle unimportant attributes without

significant impact. Finally, the decision trees of RFs are

human readable, which allows for easier understanding

of the selection process formed by the learning algorithm

and subsequent examination of the underlying causes of

its selections (i.e., why certain attribute–threshold com-

binations were or were not important).

The performance of RFs is commonly assessed using

cross validation. The full dataset is broken into n subsets

under the assumption that the contained samples are

independent. The RF is then trained (i.e., created) on

n 2 1 of the subsets and tested (i.e., its performance

is assessed) on the remainder. However, this method

cannot be used here as any two sample points may

be drawn from neighboring locations on the same dry-

line, which breaks the independence assumption.

Therefore, a single training dataset and a single testing

dataset are used. The training dataset consists of the

April–June 2007–11 cases analyzed in the previous

section, while the testing dataset consists of cases from

the period April–June 2012. To form the training

dataset, repeated selections of random points within

randomly selected drylines from the automated dryline

algorithm were made. A total of 219 attributes were

FIG. 9. Neighborhood-based POD (solid red line), FAR (solid

green line), and CSI (solid blue line) as a function of ROI for the

periodApril–June 2012without application of theRF.Corresponding

dashed lines show the scores with the application of the RF.
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assessed, including pressure, moisture, and thermal

variables. Variances of variables along the boundary

using a number of distance thresholds were also as-

sessed, along with dry and moist sector values of vari-

ables, which were found by using the specific humidity

gradient orientation as a proxy for dryline orientation.

The process was repeated until 10 000 points were

sampled from both automatically detected drylines that

corresponded to a manually detected dryline and those

that did not correspond to a manually detected dryline.

Then, the automated dryline detection algorithm was

applied to the testing dataset with and without the RF.

FIG. 10. NSSL-WRF 24-h forecasts of 2-m dewpoint (8F; black and white shading) and 10-m wind forecasts (kt;

barbs), and automatically detected drylines with (green lines only) and without (green and red lines) the RF. The

hatched regions denote the manually identified drylines.
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To compare and visualize the location and extent of

manually and automatically detected drylines for the

test cases, dryline frequencies at each grid point over all

the April–June 2012 cases are displayed in Fig. 8.

Comparing Figs. 8a and 8b, which show the automati-

cally detected drylines without and with the RF, re-

spectively, reveals that the RF eliminates many spurious

drylines, but retains most of the drylines that correspond

to the manually identified drylines shown in Fig. 8c. The

verification scores shown in Fig. 9 confirm the positive

impact on the automatically detected drylines by ap-

plying the RF. At the largest ROI, the FAR is dramat-

ically reduced from about 60% to 20%,while the POD is

only reduced from 95% to 90%. This results in a much

higher CSI, which, at the largest ROI, increases from

0.37 to 0.70 after RF application.

To illustrate the types of spurious dryline features

recognized and removed by applying the RF, Fig. 10

displays six different example cases from the test data-

set. Figures 10a, 10b, 10d, and 10e are all cases in which

boundaries intersecting the dryline (i.e., cold fronts)

were correctly removed by the RF. For the case on

16 April 2012 (Fig. 10c), no drylines were present and

the automated dryline detection mistakenly identified a

weak cold front as a dryline. In this case, the RF com-

pletely removed the entire feature. For the case on

5 June 2012, the automated algorithm identified three

different nondryline features and the RF removed all

but a small portion of these features.

4. Summary and conclusions

Drylines are a very common and important climato-

logical feature of the U.S. high plains during the spring

as they are often responsible for convective initiation.

Additionally, the passage of the dryline can produce an

abrupt transition from a warm and moist air mass to a

hot, dry, and breezy air mass, which can cause a sudden

increase in the danger of fire starts and rapid fire spread.

Despite the importance of drylines, very few studies

exist that document climatological dryline location and

frequency, or perform forecast verification, which likely

stems from difficulties in identifying drylines over large

datasets. Thus, this study aimed at streamline dryline

identification by developing an automated, multipa-

rameter identification algorithm using image-processing

and pattern recognition techniques.

The algorithm, which was described herein, was ap-

plied to five years of 4-km grid-spacing 24-h forecasts

from the WRF Model for the period April–June 2007–

11. Manually identified dryline positions, which were

available from a previous study (Coffer et al. 2013) that

used the same data, were used as truth to evaluate the

algorithm performance. Neighborhood-based verifica-

tion metrics revealed that the algorithmwas very effective

at identifying drylines with a POD of about 95% when

accounting for small spatial errors.However, drylineswere

overdetected, which resulted in a very high FAR of about

70%. Visual inspection of the automatically detected

drylines revealed that the overdetection was related to

several factors. First, boundaries that intersect a dryline,

such as convective outflow and cold fronts, were often

identified as drylines. Second, drylines frequently ex-

tended too far. Third, many moisture gradient features

that were not at all related to drylines were often detected.

Preliminary use of random forests (machine learning

technique) significantly decreased the FAR, while mini-

mally impacting the POD. The algorithm lays the

groundwork for a final product with the potential to

provide significant contributions to a variety of meteoro-

logical applications ranging from model evaluation to

operational forecasting. Future plans involve experimen-

tal implementation within a real-time modeling frame-

work to examine ways in which the algorithm could aid

operational forecasting. For example, the algorithm could

help efficiently visualize forecast uncertainty in dryline

location by application to members of an ensemble, with

drylines from all members shown in one plot similar to

spaghetti charts that are often utilized for viewing fields in

global ensembles like 500-hPa geopotential heights.
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